297 research outputs found

    Design of a Recreational Fishing Survey and Mark-Recapture Study for the Blue Crab, Callinectes sapidus, in Chesapeake Bay

    Get PDF
    The development of bay wide estimates of recreational harvest has been identified as a high priority by the Chesapeake Bay Scientific Advisory Committee (CBSAC) and by the Chesapeake Bay Program as reflected in the Chesapeake Bay Blue Crab Fishery Management Plan (Chesapeake Bay Program 1996). In addition, the BiState Blue Crab Commission (BBCAC), formed in 1996 by mandate from the legislatures of Maryland and Virginia to advise on crab management, has also recognized the importance of estimating the levels and trends in catches in the recreational fishery. Recently, the BBCAC has adopted limit and target biological reference points. These analyses have been predicated on assumptions regarding the relative magnitude of the recreational and commercial catch. The reference points depend on determination of the total number of crabs removed from the population. In essence, the number removed by the various fishery sectors, represents a minimum estimate of the population size. If a major fishery sector is not represented, the total population will be accordingly underestimated. If the relative contribution of the unrepresented sector is constant over time and harvests the same components of the population as the other sectors, it may be argued that the population estimate derived from the other sectors is biased but still adequately represents trends in population size over time. If either of the two constraints mentioned above is not met, the validity of relative trends over time is suspect. With the recent increases in the human population in the Chesapeake Bay watershed, there is reason to be concerned that the recreational catch may not have been a constant proportion of the total harvest over time. It is important to assess the catch characteristics and the magnitude of the recreational fishery to evaluate this potential bias. (PDF contains 70 pages

    Remote capacitive sensing in two-dimension quantum-dot arrays

    Get PDF
    We investigate gate-defined quantum dots in silicon on insulator nanowire field-effect transistors fabricated using a foundry-compatible fully-depleted silicon-on-insulator (FD-SOI) process. A series of split gates wrapped over the silicon nanowire naturally produces a 2×n2\times n bilinear array of quantum dots along a single nanowire. We begin by studying the capacitive coupling of quantum dots within such a 2×\times2 array, and then show how such couplings can be extended across two parallel silicon nanowires coupled together by shared, electrically isolated, 'floating' electrodes. With one quantum dot operating as a single-electron-box sensor, the floating gate serves to enhance the charge sensitivity range, enabling it to detect charge state transitions in a separate silicon nanowire. By comparing measurements from multiple devices we illustrate the impact of the floating gate by quantifying both the charge sensitivity decay as a function of dot-sensor separation and configuration within the dual-nanowire structure.Comment: 9 pages, 3 figures, 35 cites and supplementar

    A Silicon Surface Code Architecture Resilient Against Leakage Errors

    Get PDF
    Spin qubits in silicon quantum dots are one of the most promising building blocks for large scale quantum computers thanks to their high qubit density and compatibility with the existing semiconductor technologies. High fidelity single-qubit gates exceeding the threshold of error correction codes like the surface code have been demonstrated, while two-qubit gates have reached 98\% fidelity and are improving rapidly. However, there are other types of error --- such as charge leakage and propagation --- that may occur in quantum dot arrays and which cannot be corrected by quantum error correction codes, making them potentially damaging even when their probability is small. We propose a surface code architecture for silicon quantum dot spin qubits that is robust against leakage errors by incorporating multi-electron mediator dots. Charge leakage in the qubit dots is transferred to the mediator dots via charge relaxation processes and then removed using charge reservoirs attached to the mediators. A stabiliser-check cycle, optimised for our hardware, then removes the correlations between the residual physical errors. Through simulations we obtain the surface code threshold for the charge leakage errors and show that in our architecture the damage due to charge leakage errors is reduced to a similar level to that of the usual depolarising gate noise. Spin leakage errors in our architecture are constrained to only ancilla qubits and can be removed during quantum error correction via reinitialisations of ancillae, which ensure the robustness of our architecture against spin leakage as well. Our use of an elongated mediator dots creates spaces throughout the quantum dot array for charge reservoirs, measuring devices and control gates, providing the scalability in the design

    Why compare marine ecosystems?

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 1-9, doi:10.1093/icesjms/fsp221.Effective marine ecosystem-based management (EBM) requires understanding the key processes and relationships controlling the aspects of biodiversity, productivity, and resilience to perturbations. Unfortunately, the scales, complexity, and non-linear dynamics that characterize marine ecosystems often confound managing for these properties. Nevertheless, scientifically derived decision-support tools (DSTs) are needed to account for impacts resulting from a variety of simultaneous human activities. Three possible methodologies for revealing mechanisms necessary to develop DSTs for EBM are: (i) controlled experimentation, (ii) iterative programmes of observation and modelling ("learning by doing"), and (iii) comparative ecosystem analysis. We have seen that controlled experiments are limited in capturing the complexity necessary to develop models of marine ecosystem dynamics with sufficient realism at appropriate scales. Iterative programmes of observation, model building, and assessment are useful for specific ecosystem issues but rarely lead to generally transferable products. Comparative ecosystem analyses may be the most effective, building on the first two by inferring ecosystem processes based on comparisons and contrasts of ecosystem response to human-induced factors. We propose a hierarchical system of ecosystem comparisons to include within-ecosystem comparisons (utilizing temporal and spatial changes in relation to human activities), within-ecosystem-type comparisons (e.g. coral reefs, temperate continental shelves, upwelling areas), and cross-ecosystem-type comparisons (e.g. coral reefs vs. boreal, terrestrial vs. marine ecosystems). Such a hierarchical comparative approach should lead to better understanding of the processes controlling biodiversity, productivity, and the resilience of marine ecosystems. In turn, better understanding of these processes will lead to the development of increasingly general laws, hypotheses, functional forms, governing equations, and broad interpretations of ecosystem responses to human activities, ultimately improving DSTs in support of EBM

    Changes in the size structure of marine fish communities

    Get PDF
    Marine ecosystems have been heavily impacted by fishing pressure, which can cause major changes in the structure of communities. Fishing directly removes biomass and causes secondary effects such as changing predatory and competitive interactions and altering energy pathways, all of which affect the functional groups and size distributions of marine ecosystems. We conducted a meta-analysis of eighteen trawl surveys from around the world to identify if there have been consistent changes in size-structure and life history groups across ecosystems. Declining biomass trends for larger fish and invertebrates were present in nine systems, all in the North Atlantic, while seven ecosystems did not exhibit consistent declining trends in larger organisms. Two systems had alternative patterns. Smaller taxa, across all ecosystems, had biomass trends with time that were typically flat or slightly increasing. Changes in the ratio of pelagic taxa to demersal taxa were variable across the surveys. Pelagic species were not uniformly increasing, but did show periods of increase in certain regions. In the western Atlantic, the pelagic-to-demersal ratio increased across a number of surveys in the 1990s and declined in the mid 2000s. The trawl survey data suggest there have been considerable structural changes over time and region, but the patterns are not consistent across all ecosystems

    Human impacts on marine ecosystems

    Get PDF
    Marine Ecosystems and Global Change provides a detailed synthesis of the work conducted under the auspices of the Global Ocean Ecosystems Dynamics (GLOBEC) programme. This research spans two decades, and represents the largest, multi-disciplinary, international effort focused on understanding the impacts of external forcing on the structure and dynamics of global marine ecosystems

    Environmental Information Systems on the Internet: A Need for Change

    Get PDF
    The cost effective delivery of scientific and policy requirements is a key driver for the realization of global sustainability research, integrated assessment and supporting innovative systems. The next generation of geospatial information infrastructures is proposed as a possible solution. Still, questions such as ‘what does all this mean to environmental information systems’ and ‘what is expected to change’, have only partially been answered. In this paper, we describe the recent challenges for eEnvironment services in Europe, specify desired capabilities and derive according requirements. We identify affected stakeholder communities and depict their involvement in the overall value chain of environmental knowledge generation. Specific examples illustrate individual needs, while a derived description of the value chain indicates more general outcomes. Developmental requirements of future information systems are discussed. The presented work answers the questions above by bridging the gab between stakeholder needs, Information and Communication Technology (ICT) development and higher level concepts, such as Digital Earth and Future Internet.JRC.DDG.H.6-Spatial data infrastructure

    US GLOBEC: Program Goals, Approaches, and Advances

    Get PDF
    This special issue summarizes the major achievements of the US Global Ocean Ecosystem Dynamics (GLOBEC) program and celebrates its accomplishments. The articles grew out of a final symposium held in October 2009 under the auspices of the National Academy of Sciences Ocean Studies Board (http://usglobec.org/Symposium). This special issue updates the US GLOBEC "mid-life" Oceanography issue (Vol. 15, No. 2, 2002, http://tos.org/oceanography/archive/15-2.html), which put forward many of the goals and activities of the program, but was published while field work was still being conducted and results had yet to be synthesized across regional programs. The present special issue highlights the advances in understanding achieved through the synthesis of regional studies and pan-regional comparisons

    U-47700 and its analogs: non-fentanyl synthetic opioids impacting the recreational drug market

    Get PDF
    The recreational use of opioid drugs is a global threat to public health and safety. In particular, an epidemic of opioid overdose fatalities is being driven by illicitly manufactured fentanyl, while novel synthetic opioids (NSOs) are appearing on recreational drug markets as standalone products, adulterants in heroin, or ingredients in counterfeit drug preparations. Trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) is a prime example of a non-fentanyl NSO that is associated with numerous intoxications and fatalities. Here, we review the medicinal chemistry, preclinical pharmacology, clandestine availability, methods for detection, and forensic toxicology of U-47700 and its analogs. An up-to-date summary of the human cases involving U-47700 intoxication and death are described. The evidence demonstrates that U-47700 is a potent mu-opioid receptor agonist, which poses a serious risk for overdosing and death. However, most analogs of U-47700 appear to be less potent and have been detected infrequently in forensic specimens. U-47700 represents a classic example of how chemical entities from the medicinal chemistry or patent literature can be diverted for use in recreational drug markets. Lessons learned from the experiences with U-47700 can inform scientists, clinicians, and policymakers who are involved with responding to the spread and impact of NSOs
    • …
    corecore